3 resultados para Dose-Response Relationship, Drug

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent dose-response sleep restriction studies, in which nightly sleep is curtailed to varying degrees (e.g., 3-, 5-, 7-hours), have found cumulative, dose-dependent changes in sleepiness, mood, and reaction time. However, brain activity has typically not been measured, and attentionbased tests employed tend to be simple (e.g., reaction time). One task addressing the behavioural and electrophysiological aspects of a specific attention mechanism is the Attentional Blink (AB), which shows that the report accuracy of a second target (T2) is impaired when it is presented soon after a first target (Tl). The aim of the present study was to examine behavioural and electrophysioiogical responses to the AB task to elucidate how sleep restriction impacts attentional capacity. Thirty-six young-adults spent four consecutive days and nights in a sleep laboratory where sleep, food, and activity were controlled. Nightly sleep began with a baseline sleep (8 hours), followed by two nights of sleep restriction (3,5 or 8 hours of sleep), and a recovery sleep (8 hours). An AB task was administered each day at 11 am. Results from a basic battery oftests (e.g., sleepiness, mood, reaction time) confirmed the effectiveness of the sleep restriction manipulation. In terms of the AB, baseline performance was typical (Le., T2 accuracy impaired when presented soon after Tl); however, no changes in any AB behavioural measures were observed following sleep restriction for the 3- or 5-hour groups. The only statistically significant electrophysiological result was a decrease in P300 amplitude (for Tl) from baseline to the second sleep restriction night for the 3-hour group. Therefore, following a brief, two night sleep restriction paradigm, brain functioning was impaired for the TI of the AB in the absence of behavioural deficit. Study limitations and future directions are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Daytime napping improves well-being and performance for young adults. The benefits of napping in older adults should be investigated because they have fragmented nocturnal sleep, cognitive declines, and more opportunity to nap. In addition, experience with napping might influence the benefits of napping. Study 1 examined the role of experience with napping in young adults. Habitual (n = 23) and non-habitual nappers (n = 16) were randomly assigned to a 20-minute nap or a 20- minute reading condition. Both groups slept the same according to macro architecture. However, microarchitecture showed greater theta, alpha, and beta power during Stage 1, and greater delta, alpha, and sigma power during Stage 2 for habitual nappers, for the most part indicating better sleep. Both groups felt less sleepy after the nap. P2 latency, reflecting information processing, decreased after the nap for habitual nappers, and after the control condition for non-habitual nappers. In sum, both groups who slept felt better, but only the habitual nappers who napped gained a benefit in terms of information processing. Based on this outcome, experience with napping was investigated in Study 2. Study 2 examined the extent to which daytime napping enhanced cognition in older adults, especially frontal lobe function. Cognitive deficits in older adults may be due to sleep loss and age-related decline in brain functioning. Longer naps were expected to provide greater improvement, particularly for older adults, by reducing sleep pressure. Thirty-two adults, aged 24-70 years, participated in a repeated measures dose-response manipulation of sleep pressure. Twenty- and sixty-minute naps were compared to a no-nap condition in three age groups. Mood, subjective sleepiness, reaction time, working memory, 11 novelty detection, and waking electro physiological measures were taken before and after each condition. EEG was also recorded during each nap or rest condition. Napping reduced subjective sleepiness, improved working memory (serial addition / subtraction task), and improved attention (reduced P2 amplitude). Physiological sleepiness (i.e., waking theta power) increased following the control condition, and decreased after the longer nap. Increased beta power after the short nap, and seen with older adults overall, may have reflected increased mental effort. Older adults had longer latencies and smaller amplitudes for several event-related potential components, and higher beta and gamma power. Following the longer nap, gamma power decreased for older adults, but increased for young adults. Beta and gamma power may represent enhanced alertness or mental effort. In addition, Nl amplitude showed that benefits depend on the preceding nap length as well as age. Since the middle group had smaller Nl amplitudes following the short nap and rest condition, it is possible that they needed a longer nap to maintain alertness. Older adults did not show improvements to Nl amplitude following any condition; they may have needed a nap longer than 60 minutes to gain benefits to attention or early information processing. Sleep characteristics were not related to benefits of napping. Experience with napping was also investigated. Subjective data confirmed habitual nappers were happier to nap, while non-habitual nappers were happier to stay awake, reflecting self-identified napping habits. Non-habitual nappers were sleepier after a nap, and had faster brain activity (i.e., heightened vigilance) at sleep onset. These reasons may explain why non-habitual nappers choose not to nap.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rats emit two distinct types of ultrasonic vocalizations in adulthood: 22 kHz (aversive situation), and 50 kHz calls (appetitive situation). The present project is focussed on pharmacological studies of 50 kHz vocalizations. The 50 kHz calls are elicited from dopaminergic activation in the meso limbic pathway and are emitted in such appetitive situations as social contact(s), sexual encounters, food reward, etc. Eighty-five male rats were stereotaxically implanted with bilateral guide cannulae in the nucleus accumbens shell (A= 9.7, L= 1.2, V= 6.7). Quinpirole, a D2/D3 dopaminergic agonist, was injected in low doses to the nucleus accumbens shell in an attempt to elicit 50 kHz vocalizations. A dose response was obtained for the low dose range of quinpirole for six doses: 0.025 Jlg, 0.06 Jlg, 0.12 Jlg, 0.25 Jlg, 0.5 Jlg, and 1.0 Jlg. It was found that only application of the 0.25 Jlg dose of quinpirole and the 7 Jlg dose of amphetamine (positive control) significantly increased the total number of 50 kHz calls (p < 0.006 and p < 0.004 respectively); and particularly significantly increased the frequency modulated type of these calls (p < 0.01, and p < 0.006 respectively). In a double injection procedure, the dose of 0.25 Jlg quinpirole was antagonized with raclopride (D2 antagonist) or U99194A maleate (D3 antagonist) in an attempt to antagonize the response. The 0.25 Jlg dose of quinpirole was successfully antagonized by pre-treatment with an equimolar dose of U99194A maleate (p < 0.008) but not with raclopride. The 7Jlg amphetamine response was also antagonized with an equimolar dose of raclopride. Based on these results, it seems that low doses of quinpirole, particularly the 0.25 Jlg dose, are capable of increasing 50 kHz vocalizations in rats and do so by activation of the D3 dopamine receptor. This is not a biphasic response as seen with locomotor studies. Also noteworthy is the increase in frequency modulated 50 kHz calls elicited by the 0.25 Jlg dose of quinpirole indicating a possible increase in positive affect.